Supervised Learning Based Hypothesis Generation from Biomedical Literature
نویسندگان
چکیده
Nowadays, the amount of biomedical literatures is growing at an explosive speed, and there is much useful knowledge undiscovered in this literature. Researchers can form biomedical hypotheses through mining these works. In this paper, we propose a supervised learning based approach to generate hypotheses from biomedical literature. This approach splits the traditional processing of hypothesis generation with classic ABC model into AB model and BC model which are constructed with supervised learning method. Compared with the concept cooccurrence and grammar engineering-based approaches like SemRep, machine learning based models usually can achieve better performance in information extraction (IE) from texts. Then through combining the two models, the approach reconstructs the ABC model and generates biomedical hypotheses from literature. The experimental results on the three classic Swanson hypotheses show that our approach outperforms SemRep system.
منابع مشابه
Supervised Hypothesis Discovery Using Syllogistic Patterns in the Biomedical Literature
The ever-growing literature in biomedicine makes it virtually impossible for individuals to grasp all the information relevant to their interests. Since even experts’ knowledge is limited, important associations among key biomedical concepts may remain unnoticed in the flood of information. Discovering those hidden associations is called hypothesis discovery. This paper reports our approach to ...
متن کاملUsing MEDLINE as a knowledge source for disambiguating abbreviations and acronyms in full-text biomedical journal articles
Biomedical abbreviations and acronyms are widely used in biomedical literature. Since many of them represent important content in biomedical literature, information retrieval and extraction benefits from identifying the meanings of those terms. On the other hand, many abbreviations and acronyms are ambiguous, it would be important to map them to their full forms, which ultimately represent the ...
متن کاملSemi-supervised learning of causal relations in biomedical scientific discourse
BACKGROUND The increasing number of daily published articles in the biomedical domain has become too large for humans to handle on their own. As a result, bio-text mining technologies have been developed to improve their workload by automatically analysing the text and extracting important knowledge. Specific bio-entities, bio-events between these and facts can now be recognised with sufficient...
متن کاملLearning to Rank Scientific Documents from the Crowd
Motivation: Finding related published articles is an important task in any science, but with the explosion of new work in the biomedical domain it has become especially challenging. Most existing methodologies use text similarity metrics to identify whether two articles are related or not. However biomedical knowledge discovery is hypothesis-driven. The most related articles may not be ones wit...
متن کاملFiltering large-scale event collections using a combination of supervised and unsupervised learning for event trigger classification
BACKGROUND Biomedical event extraction is one of the key tasks in biomedical text mining, supporting various applications such as database curation and hypothesis generation. Several systems, some of which have been applied at a large scale, have been introduced to solve this task. Past studies have shown that the identification of the phrases describing biological processes, also known as trig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015